Murat Kasimov

More about me

Π― language (Ξ²)

/Π― language (Ξ²)/Operators/

All operators are left-associative, no exceptions - both type and value level.

The length of the symbol define its precedence. Longer glyphs takes less precedence.

How to calculate precedence? Here is the formula: 10 - operator length = precedence.

In operator compositions precedence is calculated by the first operator.

Exhaustive list of tokens with precedence subtrahend:

[1] `yi` - [Y]onedified functor mapping [0] 𝅺𝅹 𝅺𝅹 𝅺𝅹 - [H]om functor mapping [1] `ha` - Mapping contr[A]variantly [1] `ho` - Mapping c[O]variantly [1] `hu` - Mapping through [U]nit [1] `hop` - Mapping through [P]roduct [1] `has` - Mapping through [S]um [2] `eq` - Mapping through [E][Q]uality relation [0] `st` - Mapping through [S]uper[T]ype relation [0] `bt` - Mapping through [B]ase[T]ype relation [1] `xk` - Source lax [K]leisli [1] `kx` - Source lax co-[K]leisli [1] `xl` - Target lax K[L]eisli [1] `lx` - Target lax co-K[L]eisli [1] `rx` - Lax co-[R]epresenting object [1] `xr` - Lax [R]epresenting object [2] `hdj` - Left A[D]joint , right Ad[J]oint [2] `hjd` - Right Ad[J]oint , left A[D]joint [1] `hc` - [C]artesian closed category

Exhaustive list of basic operators:

yi β‹… yo β‹… yu β‹… ya β‹… yok β‹… yuk β‹… kyo β‹… kyok β‹… kyokl β‹… yokl β‹… ryo β‹… ryu β‹… yor β‹… yur β‹… ho β‹… hu β‹… ha β‹… hc β‹… st β‹… hop β‹… hdj β‹… hjd β‹… has β‹… yp β‹… ys β‹… yw β‹… eq

Incomplete list of composite operators:

yo'st β‹… yu'st β‹… ya'st β‹… yo'yo β‹… yo'yu β‹… yo'ya β‹… ya'yo β‹… ya'ya β‹… yo'yo'yo β‹… yo'ya'yo β‹… yo'yo'ya β‹… yo'ya'ya β‹… ya'yo'yo β‹… ya'ya'yo β‹… ya'ya'ya β‹… ya'yo'ya β‹… yp'yo β‹… yp'yu β‹… ys'yo β‹… ys'yu β‹… ho'ha β‹… ho'ho β‹… ho'hu β‹… ha'ha β‹… ha'ho β‹… ho'yo β‹… ho'yok β‹… ho'yokl β‹… ho'yu β‹… ho'yuk β‹… ho'yukl β‹… ha'yo β‹… ha'yok β‹… ha'yokl β‹… ha'yu β‹… ha'yuk β‹… ha'yukl β‹… hu'st β‹… hc'st β‹… hc'bt β‹… hop'yp β‹… hop'ys β‹… hop'ys'has β‹… hjd'yp β‹… hjd'ys β‹… hjd'eq